
study of the $1: 2$ complex of $\mathbf{2 a}$ and acetone that a hydrogen bond between OH of $\mathbf{2 a}$ and acetone forces the latter in the vicinity of the saturated carbon of the former in the complex. ${ }^{2 b, c}$ These data suggest the potential for optical resolution of a guest molecule by complexing with optically active $\mathbf{2 b} \mathbf{b}$ d. Oxidative coupling of 100% optically pure 1-(o-halophenyl)-1-phenylpropyn-1-ol ($\mathbf{1 b - d}$), which had been obtained by previously reported resolution method, ${ }^{3}$ gave in almost $100 \% \mathrm{ee}^{4} \mathbf{2 b}\left(\mathrm{mp} \mathrm{166-168}{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}} 47.7^{\circ 4}\right.$), 2c (mp 127-129 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}} 122^{\circ}$), and $2 \mathrm{~d}\left(\mathrm{mp} 139-141^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}\right.$ 129°), respectively. By this method, both the d - and l-enantiomers of $\mathbf{2 b}$-d were prepared in 100% ee. In all cases of the optical resolution, 100% ee $\mathbf{2 b - d}$ were used.

When a solution of $l-2 \mathrm{c}(19.2 \mathrm{~g}, 39.8 \mathrm{mmol})$ and $\mathrm{dl}-3$ (17.8 $\mathrm{g}, 159 \mathrm{mmol})$ in ether-petroleum ether ($1: 1,100 \mathrm{~mL}$) was kept at room temperature for 6 h , a $1: 2$ complex of $l-2 \mathrm{c}$ and $d \mathbf{- 3}$ (25.5 g, $91 \%,{ }^{5}[\alpha]_{D}-85.8^{\circ}$) was obtained as colorless prisms. Upon heating the complex, 28% ee $d-3\left(8.0 \mathrm{~g}, 90 \%,{ }^{5}[\alpha]_{\mathrm{D}}+4.0^{\circ}\right.$ $\left(\mathrm{CHCl}_{3}\right)$) was obtained by distillation. ${ }^{6}$ The remaining $l-2 \mathrm{c}$ was 100% optically pure. Two recrystallization of the $1: 2$ complex of $l-2 \mathrm{c}$ and the 28% ee $d-3(25.5 \mathrm{~g})$ from ether-petroleum ether ($1: 1$, each 80 mL) gave the complex ($11.6 \mathrm{~g}, 41 \%,[\alpha]_{\mathrm{D}}-84.0^{\circ}$) that, on distillation, gave 66% ee $d-3\left(3.5 \mathrm{~g}, 39.3 \%,[\alpha]_{\mathrm{D}}+9.5^{\circ}\right.$ $\left.\left(\mathrm{CHCl}_{3}\right)\right)$. When the same recrystallization was repeated twice for the complex prepared from $l-2 \mathrm{c}$ and the 66% ee $d-3(3.7 \mathrm{~g})$, the $1: 2$ complex of $l-2 \mathrm{c}$ and 100% ee $d-3(4.1 \mathrm{~g}, 15 \% \mathrm{mp} 78-79$ ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-71.7^{\circ}$) was obtained. By further recrystallization, the $[\alpha]_{D}$ value of the complex did not change. Upon heating the complex, 100% ee $d-3\left(1.16 \mathrm{~g}, 13 \%,[\alpha]_{\mathrm{D}}+14.4^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$, lit. ${ }^{7}$ $\left.+14.4^{\circ}\left(\mathrm{CHCl}_{3}, c 0.01\right)\right)$ was obtained after distillation.

This resolution method was not effective for 2-methylcyclohexanone and only the 2% ee d-enantiomer was obtained in 95% yield by a single complexation with $l-2 c$. This suggests that the distance between the chiral center and the carbonyl group in the guest molecule is crucial to the efficiency of resolution. In support of this, 4 and 5 were resolved quite efficiently by this method. Complexation of $l-2 \mathrm{c}(7.7 \mathrm{~g}, 16 \mathrm{mmol})$ and $d l-4(6.3 \mathrm{~g}, 64 \mathrm{mmol})$ in ether-petroleum ether ($1: 1,50 \mathrm{~mL}$) at room temperature for 6 h gave the $1: 1$ complex of $l-2 \mathrm{c}$ and $l-4\left(9.4 \mathrm{~g}, 86 \%,[\alpha]_{\mathrm{D}}-20.2^{\circ}\right)$. Seven recrystallizations of the above complex from ether-petroleum ether ($1: 1$, each 30 mL) gave the $1: 2$ complex of $l-2 \mathrm{c}$ and 100% ee $l-3\left(0.87 \mathrm{~g}, 8 \%, \mathrm{mp} 61-63^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-126^{\circ}\right)$, the $[\alpha]_{\mathrm{D}}$ value of which did not change by further recrystallization. When

[^0]the complex was heated, 100% ee $l-4\left(0.19 \mathrm{~g}, 6 \%,[\alpha]_{\mathrm{D}}-148^{\circ}\right)$ was obtained by distillation.
Similar complexation of $l-2 \mathrm{c}(13.4 \mathrm{~g}, 27.7 \mathrm{mmol})$ and $\mathrm{dl}-5(11.1$ $\mathrm{g}, 111 \mathrm{mmol})$ gave the $1: 2$ complex of $l-2 \mathrm{c}$ and $l-5(18.5 \mathrm{~g}, 98 \%$, $[\alpha]_{\mathrm{D}}+5.1^{\circ}$). Recrystallization of the complex from ether-petroleum ether ($1: 1$, each 50 mL) was repeated 12 times to give the $1: 2$ complex of $l-2 \mathrm{c}$ and 100% ee $d-5(0.95 \mathrm{~g}, 5 \%, \mathrm{mp} 94-95$ $\left.{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-81.3^{\circ}\right)$. Heating of the complex resulted in 100% ee $d-5\left(0.25 \mathrm{~g}, 4.5 \%,[\alpha]_{\mathrm{D}}+30.1^{\circ}\right.$, lit. $^{8}+33.3^{\circ}$ (neat)).
When d-2c was used instead of $l-2 \mathrm{c}$ for the resolution of 3, 4, and 5 , the other enantiomers $l-3, d-4$, and $l-5$ were obtained, respectively, in almost the same yields as those by $l-2 c$. For example, when a solution of $d-2 \mathrm{c}(8.1 \mathrm{~g}, 16.7 \mathrm{mmol})$ and $d l-5(6.7$ $\mathrm{g}, 67 \mathrm{mmol})$ in ether-petroleum ether ($1: 1,100 \mathrm{~mL}$) was kept at room temperature for 6 h, a $1: 2$ complex of $d-2 \mathrm{c}$ and $l-5$ (11.2 g, $98 \%,[\alpha]_{\mathrm{D}}+88.8^{\circ}$) crystallized out, which on distillation gave 17% ee $l-5\left(3.15 \mathrm{~g}, 94 \%,[\alpha]_{\mathrm{D}}-5.2^{\circ}\right)$. Recrystallization of the complex from ether-petroleum ether ($1: 1$, each 30 mL) was repeated 12 times to give the $1: 2$ complex of $d-2 \mathrm{c}$ and 100% ee $l-5$ $\left(0.69 \mathrm{~g}, 6 \%, \mathrm{mp} 93-95^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+81.3^{\circ}\right.$). By heating the complex, 100% ee $l-5\left(0.17 \mathrm{~g}, 5 \%,[\alpha]_{\mathrm{D}}-30.1^{\circ}\right)$ distilled out.
Although 2d showed almost the same efficiency as did 2c for the resolution, $\mathbf{2 b}$ was much less effective. One complexation of $d l-5$ with $l-2 \mathrm{~d}$ followed by distillation gave 19% ee $d-5$ (95%), even though the same treatment of $\mathrm{dl}-5$ with $\mathrm{l}-\mathrm{2b}$ gave $\mathrm{dl}-5(87 \%)$. When recrystallization of the $1: 2$ complex of $l-2 \mathrm{~d}$ and 19% ee $d-5$ from ether-petroleum ether (1:1) was repeated 12 times, 89% ee $d-5(11 \%)$ was obtained after distillation.
The quite efficient optical resolution by the complexation method is probably due to a favorable packing of host and guest molecules in the crystal. The channel formed by optically active 2 includes one enantiomer of a guest selectively and results in more stable complex rather than to include the other enantiomer. X-ray structural study of the complex of $l-2 \mathrm{c}$ and $d \mathbf{- 3}$ is in progress.

Acknowledgment. We thank Professor Ryoji Noyori of Nagoya University for helpful comments and discussions.
(8) Levene, P. A.; Haller, H. L. J. Biol. Chem. 1926, 69, 165.

Crystal and Molecular Structures of 2,11-Dithia- and 1,3,10,12-Tetrathia[3.3](2,6)pyridinophanes

George R. Newkome,* Sebastiano Pappalardo, ${ }^{\dagger}$ and Frank R. Fronczek

Department of Chemistry, Louisiana State University
Baton Rouge, Louisiana 70803
Received November 23, 1982
The conformational aspects of 2,11-dithia[3.3]metacyclophanes, prepared as precursors for the corresponding [2.2]metacyclophanes and/or [2.2]metacyclophane-1,9-dienes, have been well studied ${ }^{1}$ via the convenient ${ }^{1} \mathrm{H}$ NMR spectral probes present in the form of the "internal" proton(s) or substituents. Conversely, relatively little is known about the stereochemistry of the structurally related [3.3](2,6)pyridinophanes, which lack these probes. Initial ${ }^{1} \mathrm{H}$ NMR studies on pyridinophanes 1 and 2 suggested a rapid synanti isomerization in bis(sulfide) $1 ;{ }^{2 a}$ while in tetrasulfide 2 , conjugative factors have been proposed to play a role in raising the energy barrier to ring inversion. ${ }^{3}$ Moreover in solution

[^1]

Figure 1. ORTEP drawings (side, front views) of cyclophane 1.
Scheme I

syn-[3.3]metacyclophanes have been thought to exist in three rapidly interconverting isomeric forms a-c (Scheme I), ${ }^{4}$ whereas X-ray data have provided evidence for the crown-like configuration a in the parent syn-2,11-dithia[3.3]metacyclophane (3) ${ }^{5}$ as well as 4. ${ }^{6}$ On the other hand, a $4: 1$ distribution of conformers a and b has been found in the crystal structure of the dimethyl syn analogue (5) of 3.

We report herein single-crystal X-ray structure determinations of [3.3]pyridinophanes $\mathbf{1}$ and $\mathbf{2}$ and present evidence that $\mathbf{1}$ and

1, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{N} ; \mathrm{R}=\mathrm{H} ; n=1$ 2, $\mathrm{X}=\mathrm{S} ; \mathrm{Y}=\mathrm{CH}_{2} ; \mathrm{Z}=\mathrm{N} ; \mathrm{R}=\mathrm{H} ; n=1$ 3, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{CH} ; \mathrm{R}=\mathrm{H} ; n=1$ $4, \mathrm{X}=\mathrm{S} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{CH} ; \mathrm{R}=\mathrm{OCH}_{3} ; n=1$ 5, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{CCH}_{3} ; \mathrm{R}=\mathrm{H} ; n=1$ 6, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{N} ; \mathrm{R}=\mathrm{H} ; n=2$ 7, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{S} ; \mathrm{Z}=\mathrm{N} ; \mathrm{R}=\mathrm{H} ; n=3$ 8, $\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{O} ; \mathrm{Z}=\mathrm{N} ; \mathrm{R}=\mathrm{H} ; n=1$

2 exist as the specific syn conformers both in solid state and solution.

Phane 1, as shown in Figure 1, is found to exist as the syn conformer a ${ }^{8}$ in the solid state, with approximate symmetry $C_{2 v}$, an SS distance of 6.180 (1) \AA, and torsion angles (NCCS) of $112-121^{\circ}$. The single-bond character of the CS bonds is supported by the average length of 1.810 (3) \AA ($1.82 \AA$ for $\mathrm{C}-\mathrm{S}$ and 1.62 \AA for $\mathrm{C}=\mathrm{S}$ bonds). ${ }^{9}$ The average CSC bond angle of 102.6 (3) ${ }^{\circ}$ is slightly smaller than that found in related carbophanes $\left(104-109^{\circ}\right) .{ }^{5}$
(4) Sato, T.; Wakabayashi, M.; Hata, K.; Kainosho, M. Tetrahedron 1971, 27, 2737.
(5) Anker, W.; Bushnell, G. W.; Mitchell, R. H. Can. J. Chem. 1980, 57, 3080. For Se analogue see: Bushnell, G. W.; Mitchell, R. H. Ibid. 1982, 60, 362.
(6) (a) Bottino, F.; Foti, S.; Pappalardo, S.; Bresciani-Pahor, N. Tetrahedron Lett. 1979, 1171 . (b) Bresciani-Pahor, N.; Calligaris, M.; Randaccio, L. Acta Crystallogr., Sect. B 1980, B36, 632. (c) Bottino, F.; Pappalardo, S. Tetrahedron 1980, 36, 3095.
(7) Davis, B. R.; Bernal, I. J. Chem. Soc. B 1971, 2307.
(8) Crystal data for 1: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~S}_{2} \mathrm{~N}_{2}$; orthorhombic; space group Pccn; a $=15.226$ (4) $\AA, b=21.929$ (6) $\AA, c=8.008$ (4) $\AA ; d_{\mathrm{c}}=1.363 \mathrm{~g} \mathrm{~cm}^{-3}, Z=$ $8, R=0.029$ for 995 observations.
(9) Abrahams, S. C. Quart. Rev. 1956, 10, 407. Jeffrey, G. A.; Shiono, R. Acta Crystallogr. 1959, 12, 447. Karle, I. L.; Estlin, J. A.; Butts, K. Ibid. 1967, 22, 273.

Flgure 2. ORTEP drawings (side, front views) of cyclophane 2.

Table 1. ${ }^{1}$ H NMR Spectral Data (δ)

	$\mathrm{H}-4$	$\mathrm{H}-3,5$	CH_{2}
1	$7.25(\mathrm{t}, 7.3)$	$6.94(\mathrm{~d}, 7.3)$	$3.99(\mathrm{~s})$
2^{3}	$7.21(7.8)$	$6.87(7.8)$	$5.57(\mathrm{brs})$
$6^{2 \mathrm{~b}}$	$7.53(\mathrm{t})$	$7.30(\mathrm{~d})$	$3.77(\mathrm{~s})$
7	$7.50(\mathrm{t}, 7.3)$	$7.18(\mathrm{~d}, 7.3)$	$3.75(\mathrm{~s})$

Phane 2, as depicted in Figure 2, is shown to also possess the syn conformation c in the crystal state. ${ }^{10}$ This is the first, to the best of our knowledge, syn-[3.3]metacyclophane existing in this conformation. The molecule has exact C_{s} and approximate $C_{2 v}$ symmetry in the crystal. The short C6-C7 distance of $4.6 \AA$ and dramatically diminished torsion angles (NCSC) of ca. 48° characterize this geometry. Although the shorter (pyridine) $\mathrm{Cl}-\mathrm{S} 1$ bond length of 1.784 (3) \AA is suggestive ${ }^{11}$ of slightly increased multiple-bond character (i.e., the thioimidate moiety), the bridging C6-S1 bond length of 1.797 (4) \AA is indicative of single-bond character. The juxtaposition of methylene protons to the N atoms ($2.5 \AA$) may infer hydrogen bonding; however, the spatial orientation of these hydrogens is not favored for optimal hydrogen bonding. ${ }^{12}$ The W conformation in 1 and the lack of it in 2 are probably the results of heteroatom ($\mathrm{N}-\mathrm{S}$) repulsions.

In solution, the conformational preference of 1 was easily ascertained by chemical shift comparison (Table I) of its pyridyl protons with those of $2,11,20$-trithia[3.3.3]- (6) and $2,11,20,29-$ tetrathia[3.3.3.3](2,6)pyridinophane (7). ${ }^{13}$ Therefore, the upfield shift ($\delta=0.24-0.36$) experienced by the pyridyl protons in $\mathbf{1}$ is supportive of the syn conformation in solution. No temperature dependence has been reported ${ }^{2 a}$ for the methylene signal in 1 down to $-50^{\circ} \mathrm{C}$, thus indicating that 1 is still undergoing conformational equilibration among the isomeric forms a, b, and c.

Contrary to the reported ${ }^{3}$ syn-anti equilibrium for 2 in solution, the ΔG^{\ddagger} of $12.2 \mathrm{kcal} / \mathrm{mol}$ is best explained by a mobile syn conformation $[\mathrm{a} \rightleftarrows \mathrm{b} \rightleftharpoons \mathrm{c}]$ in view of the invariant pyridine region in the ${ }^{1} \mathrm{H}$ VTNMR spectrum; while at $-50^{\circ} \mathrm{C}$, conformer 2 c is the preferred frozen orientation. Cyclophane $\mathbf{8}^{14}$ is probably also in the syn conformation on the basis of similar chemical shift differences ($\Delta \delta=0.3-0.4$) exhibited between 8 and its larger, more flexible homologues.

Acknowledgment. We thank the National Science Foundation for partial support of this work.

Registry No. 1, 25117-68-4; 2, 80693-51-2.
Supplementary Material Available: Experimental details, tables containing bond lengths, bond angles, torsion angles, and interatomic distances, and atomic coordinates and anisotropic temperature factors for $\mathbf{1}$ and $\mathbf{2}$ are given (9 pages). Ordering information is given on any current masthead page.

[^2]
[^0]: (2) (a) Toda, F.; Akagi, K. Tetrahedron Lett. 1968, 3695. (b) Toda, F.; Ward, D. L.; Hart, H. Ibid. 1981, 22, 3865. (c) Toda, F.; Tanaka, K.; Hart, H.; Ward, D. L.; Ueda, H.; Ōshima, T. J. Chem. Soc. Jpn. 1983, 239
 (3) Toda, F.; Tanaka, K.; Ueda, H. Tetrahedron Lett. 1981, 22, 4669
 (4) The enantiomeric excess (\% ee) was determined by NMR analysis in CDCl_{3} by using the chiral shift reagent, tris[3-(heptafluoropropylhydroxy-methylene)- d-camphoratoleuropium(III), Eu(hfc) ${ }_{3}$ (Aldrich, $99+\%$). The \% ee values are accurate within the limits of error ($\pm 5 \%$) of the NMR instrument used, JASCO, FX-100.
 (5) All yields of the optical resolution were calculated on the basis of the theoretical amount of the optical isomer contained in the initial $d l$-compound.
 (6) All distillations of the guest from the complex were carried out under atmospheric pressure.
 (7) Adolphen, G.; Eisenbraun, E. J.; Keen, G. W.; Flanagan, P. W. K. Org. Prep. Proc. 1970, 93.

[^1]: ${ }^{\dagger}$ On leave from the Istituto Dipartimentale di Chimica e Chimica Industriale, Universita di Catania, Viale A. Doria 6, Catania, Italy, 1982.
 (1) For a recent review see: Lai, Y. H. Heterocycles 1981, 16, 1739.
 (2) (a) Vögtle, F.; Schunder, L. Chem. Ber. 1969, 102, 2677. (b) Boekelheide, V.; Lawson, J. A. Chem. Commun. 1970, 1558. (c) Martel, H. J. J.-B.; McMahon, S.; Rasmussin, M. Aust. J. Chem. 1979, 32, 1241. (d) Galuszko, V. Rocz. Chem. 1975, 49, 1597.
 (3) Bottino, F.; Pappalardo, S. Chem. Lett. 1981, 1781.

[^2]: (10) Crystal data for 2: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{4}$; monoclinic; space group $P 2_{1} / m ; a$ $=6.051$ (3) $\AA, b=13.840$ (4) $\AA, c=8.342(2) \AA ; \beta=110.42(4)^{\circ} ; d_{\mathrm{c}}=1.575$ $\mathrm{g} \mathrm{cm}^{-3}, Z=2, R=0.041$ for 831 observations.
 (11) Ricci, J. S.; Bernal, I. J. Am. Chem. Soc. 1969, 91, 4078. de Gil, E. R.; Dahl, L. F. Ibid. 1969, 91, 3751.
 (12) Newkome, G. R.; Lee, H.-W.; Baker, G. R.; Theriot, K. J.; Fronczek, F. R. J. Chem. Soc., Chem. Commun. 1983, submitted for publication.
 (13) Analytical and spectral data are in accord for this new macrocycle.
 (14) Newcomb, M.; Gokel, G. W.; Cram, D. J. J. Am. Chem. Soc. 1974, 96, 6810 .

